Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.336
Filtrar
1.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474002

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by the rapid abnormal growth of skin cells in the epidermis, driven by an overactive immune system. Consequently, a complex interplay among epidermal cells, immune cells, and sensory neurons contributes to the development and progression of psoriasis. In these cellular contexts, various ion channels, such as acetylcholine receptors, TRP channels, Ca2+ release-activated channels, chloride channels, and potassium channels, each serve specific functions to maintain the homeostasis of the skin. The dysregulation of ion channels plays a major role in the pathophysiology of psoriasis, affecting various aspects of epidermal cells, immune responses, and sensory neuron signaling. Impaired function of ion channels can lead to altered calcium signaling, inflammation, proliferation, and sensory signaling, all of which are central features of psoriasis. This overview summarizes the pathophysiological roles of ion channels in epidermal cells, immune cells, and sensory neurons during early and late psoriatic processes, thereby contributing to a deeper understanding of ion channel involvement in the interplay of psoriasis and making a crucial advance toward more precise and personalized approaches for psoriasis treatment.


Assuntos
Queratinócitos , Psoríase , Humanos , Queratinócitos/fisiologia , Epiderme , Células Epidérmicas , Células Receptoras Sensoriais , Canais Iônicos
2.
Cytotherapy ; 26(4): 360-371, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38363247

RESUMO

BACKGROUND AIMS: Despite advancements in wound care, wound healing remains a challenge, especially in individuals with type 2 diabetes. Cell sheet technology has emerged as an efficient and promising therapy for tissue regeneration and wound repair. Among these, bilayered human keratinocyte-fibroblast cell sheets constructed using temperature-responsive culture surfaces have been shown to mimic a normal tissue-like structure and secrete essential cytokines and growth factors that regulate the wound healing process. METHODS: This study aimed to evaluate the safety and therapeutic potential of human skin cell sheets to treat full-thickness skin defects in a rat model of type 2 diabetes. RESULTS: Our findings demonstrate that diabetic wounds transplanted with bilayered cell sheets resulted in accelerated re-epithelialization, increased angiogenesis, enhanced macrophage polarization and regeneration of tissue that closely resembled healthy skin. In contrast, the control group that did not receive cell sheet transplantation presented characteristic symptoms of impaired and delayed wound healing associated with type 2 diabetes. CONCLUSIONS: The secretory cytokines and the upregulation of Nrf2 expression in response to cell sheet transplantation are believed to have played a key role in the improved wound healing observed in diabetic rats. Our study suggests that human keratinocyte-fibroblast cell sheets hold great potential as a therapeutic alternative for diabetic ulcers.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Ratos , Animais , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Cicatrização/fisiologia , Queratinócitos/fisiologia , Queratinócitos/transplante , Pele , Fibroblastos/fisiologia , Citocinas
3.
Elife ; 132024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225894

RESUMO

Traditionally, peripheral sensory neurons are assumed as the exclusive transducers of external stimuli. Current research moves epidermal keratinocytes into focus as sensors and transmitters of nociceptive and non-nociceptive sensations, tightly interacting with intraepidermal nerve fibers at the neuro-cutaneous unit. In animal models, epidermal cells establish close contacts and ensheath sensory neurites. However, ultrastructural morphological and mechanistic data examining the human keratinocyte-nerve fiber interface are sparse. We investigated this exact interface in human skin applying super-resolution array tomography, expansion microscopy, and structured illumination microscopy. We show keratinocyte ensheathment of afferents and adjacent connexin 43 contacts in native skin and have applied a pipeline based on expansion microscopy to quantify these parameter in skin sections of healthy participants versus patients with small fiber neuropathy. We further derived a fully human co-culture system, visualizing ensheathment and connexin 43 plaques in vitro. Unraveling human intraepidermal nerve fiber ensheathment and potential interaction sites advances research at the neuro-cutaneous unit. These findings are crucial on the way to decipher the mechanisms of cutaneous nociception.


Assuntos
Conexina 43 , Queratinócitos , Animais , Humanos , Queratinócitos/fisiologia , Pele/inervação , Epiderme , Fibras Nervosas
4.
Photodermatol Photoimmunol Photomed ; 40(1): e12926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957888

RESUMO

BACKGROUND: Light therapy is widely used in medicine. Specifically, photobiomodulation has been shown to exert beneficial effects in wound healing disorders, which present a major challenge in health care. The study's aim was providing information on the effect of a novel, red-laser-based wound therapy device (WTD) on keratinocytes and fibroblasts during wound healing under optimal and non-optimal conditions. METHODS: The scratch wound assay was employed as a wound healing model for mechanical damage with readjustment of specific cell milieus, explicitly chronic TH1 inflammation and TH2-dominant conditions. Furthermore, gene expression analysis of pro-inflammatory cytokines (IL1A, IL6, CXCL8), growth factors (TGFB1, PDGFC), transcription factors (NFKB1, TP53) and heat shock proteins (HSP90AA1, HSPA1A, HSPD1) as well as desmogleins (DSG1, DSG3) in keratinocytes and collagen (COL1A1, COL3A1) in fibroblasts was performed after WTD treatment. RESULTS: It was shown that WTD treatment is biocompatible and supports scratch wound closure under non-optimal conditions. A distinct enhancement of desmoglein and collagen gene expression as well as induction of early growth factor gene expression was observed under chronic inflammatory conditions. Moreover, WTD increased HSPD1 transcript levels in keratinocytes and augmented collagen expression in fibroblasts during wound healing under TH2 conditions. WTD treatment also alleviated the inflammatory response in keratinocytes and induced early growth factor gene expression in fibroblasts under physiological conditions. CONCLUSION: Positive effects described for wound treatment with WTD could be replicated in vitro and seem to be to be conferred by a direct influence on cellular processes taking place in keratinocytes and fibroblasts during wound healing.


Assuntos
Queratinócitos , Cicatrização , Humanos , Proliferação de Células , Movimento Celular , Queratinócitos/fisiologia , Colágeno , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular , Lasers , Fibroblastos/fisiologia
5.
Int J Radiat Oncol Biol Phys ; 118(3): 801-816, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758068

RESUMO

PURPOSE: Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS: H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS: In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS: Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.


Assuntos
Histonas , Radiodermatite , Animais , Camundongos , Histonas/metabolismo , Pele/efeitos da radiação , Queratinócitos/fisiologia , Radiação Ionizante , Senescência Celular/efeitos da radiação
6.
Mol Biol Cell ; 35(1): br1, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910204

RESUMO

Fibroblasts migrate discontinuously by generating transient leading-edge protrusions and irregular, abrupt retractions of a narrow trailing edge. In contrast, keratinocytes migrate persistently and directionally via a single, stable, broad protrusion paired with a stable trailing-edge. The Rho GTPases Rac1, Cdc42 and RhoA are key regulators of cell protrusions and retractions. However, how these molecules mediate cell-type specific migration modes is still poorly understood. In fibroblasts, all three Rho proteins are active at the leading edge, suggesting short-range coordination of protrusive Rac1 and Cdc42 signals with RhoA retraction signals. Here, we show that Cdc42 was surprisingly active in the trailing-edge of migrating keratinocytes. Elevated Cdc42 activity colocalized with the effectors MRCK and N-WASP suggesting that Cdc42 controls both myosin activation and actin polymerization in the back. Indeed, Cdc42 was required to maintain the highly dynamic contractile acto-myosin retrograde flow at the trailing edge of keratinocytes, and its depletion induced ectopic protrusions in the back, leading to decreased migration directionality. These findings suggest that Cdc42 is required to stabilize the dynamic cytoskeletal polarization in keratinocytes, to enable persistent, directional migration.


Assuntos
Movimento Celular , Queratinócitos , Proteína cdc42 de Ligação ao GTP , Proteínas rho de Ligação ao GTP , Proteína cdc42 de Ligação ao GTP/metabolismo , Fibroblastos/metabolismo , Queratinócitos/fisiologia , Miosinas/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Humanos
7.
Dermatology ; 239(6): 849-859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717565

RESUMO

BACKGROUND: This review summarizes uses and new applications for dermatological research of in vitro culture models of human skin explants (HSEs). In the last decade, many innovations have appeared in the literature and an exponential number of studies have been recorded in various fields of application such as process culture engineering, stem cell extractions methodology, or cell-to-cell interaction studies under physiological and pathological conditions, wound-healing, and inflammation. Most studies also concerned pharmacology, cosmetology, and photobiology. However, these topics will not be considered in our review. SUMMARY: A better understanding of the mechanisms driving intercellular relationships, at work in the maintenance of 3D tissue architectures has led to the improvement of cell culture techniques. Many papers have focused on the physiological ways that govern in vitro tissue maintenance of HSEs. The analysis of the necessary mechanical stress, intercellular and cell-matrix interactions, allows the maintenance and prolonged use of HSEs in culture for up to 15 days, regardless of the great variability of study protocols from one laboratory to another and in accordance with the objectives set. Because of their close similarities to fresh skin, HSEs are increasingly used to study skin barrier repair and wound healing physiology. Easy to use in co-culture, this model allows a better understanding of the connections and interactions between the peripheral nervous system, the skin and the immune system. The development of the concept of an integrated neuro-immuno-cutaneous system at work in skin physiology and pathology highlighted by this article represents one of the new technical challenges in the field of in vitro culture of HSE. This review of the literature also reveals the importance of using such models in pathology. As sources of stem cells, HSEs are the basis for the development of new tissue engineering models such as organoids or optical clearing tissues technology. This study identifies the main advances and cross-cutting issues in the use of HSE.


Assuntos
Queratinócitos , Cicatrização , Humanos , Queratinócitos/fisiologia , Cicatrização/fisiologia , Pele , Engenharia Tecidual/métodos , Fenômenos Fisiológicos da Pele
8.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511054

RESUMO

Skin pigmentation ensures efficient photoprotection and relies on the pigment melanin, which is produced by epidermal melanocytes and transferred to surrounding keratinocytes. While the molecular mechanisms of melanin synthesis and transport in melanocytes are now well characterized, much less is known about melanin transfer and processing within keratinocytes. Over the past few decades, distinct models have been proposed to explain how melanin transfer occurs at the cellular and molecular levels. However, this remains a debated topic, as up to four different models have been proposed, with evidence presented supporting each. Here, we review the current knowledge on the regulation of melanin exocytosis, internalization, processing, and polarization. Regarding the different transfer models, we discuss how these might co-exist to regulate skin pigmentation under different conditions, i.e., constitutive and facultative skin pigmentation or physiological and pathological conditions. Moreover, we discuss recent evidence that sheds light on the regulation of melanin exocytosis by melanocytes and internalization by keratinocytes, as well as how melanin is stored within these cells in a compartment that we propose be named the melanokerasome. Finally, we review the state of the art on the molecular mechanisms that lead to melanokerasome positioning above the nuclei of keratinocytes, forming supranuclear caps that shield the nuclear DNA from UV radiation. Thus, we provide a comprehensive overview of the current knowledge on the molecular mechanisms regulating skin pigmentation, from melanin exocytosis by melanocytes and internalization by keratinocytes to processing and polarization within keratinocytes. A better knowledge of these molecular mechanisms will clarify long-lasting questions in the field that are crucial for the understanding of skin pigmentation and can shed light on fundamental aspects of organelle biology. Ultimately, this knowledge can lead to novel therapeutic strategies to treat hypo- or hyper-pigmentation disorders, which have a high socio-economic burden on patients and healthcare systems worldwide, as well as cosmetic applications.


Assuntos
Melaninas , Melanócitos , Humanos , Melanócitos/fisiologia , Queratinócitos/fisiologia , Epiderme , Pigmentação da Pele , Melanossomas
9.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508492

RESUMO

Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-ß/-γ, IL-1ß, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.


Assuntos
Fibroínas , Feminino , Humanos , Fibroínas/farmacologia , Fibroínas/química , Técnicas de Cocultura , Tecidos Suporte/química , Engenharia Tecidual/métodos , Células Endoteliais , Estudos Prospectivos , Fator de Crescimento Placentário/metabolismo , Queratinócitos/fisiologia , Fibroblastos/metabolismo
10.
Exp Dermatol ; 32(10): 1598-1612, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37382420

RESUMO

Psoriasis is a chronic immune-mediated inflammatory skin disease that involves a complex interplay between infiltrated immune cells and keratinocytes. Great progress has been made in the research on the molecular mechanism of coding and non-coding genes, which has helped in clinical treatment. However, our understanding of this complex disease is far from clear. MicroRNAs (miRNAs) are small non-coding RNA molecules that are involved in post-transcriptional regulation, characterised by their role in mediating gene silencing. Recent studies on miRNAs have revealed their important role in the pathogenesis of psoriasis. We reviewed the current advances in the study of miRNAs in psoriasis; the existing research has found that dysregulated miRNAs in psoriasis notably affect keratinocyte proliferation and/or differentiation processes, as well as inflammation progress. In addition, miRNAs also influence the function of immune cells in psoriasis, including CD4+ T cells, dendritic cells, Langerhans cells and so on. In addition, we discuss possible miRNA-based therapy for psoriasis, such as the topical delivery of exogenous miRNAs, miRNA antagonists and miRNA mimics. Our review highlights the potential role of miRNAs in the pathogenesis of psoriasis, and we expect more research progress with miRNAs in the future, which will help us understand this complex skin disease more accurately.


Assuntos
Dermatite , MicroRNAs , Psoríase , Humanos , MicroRNAs/genética , Pele/patologia , Queratinócitos/fisiologia , Dermatite/patologia
11.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901720

RESUMO

Diabetes mellitus (DM) is an important cause of chronic wounds and non-traumatic amputation. The prevalence and number of cases of diabetic mellitus are increasing worldwide. Keratinocytes, the outermost layer of the epidermis, play an important role in wound healing. A high glucose environment may disrupt the physiologic functions of keratinocytes, resulting in prolonged inflammation, impaired proliferation, and the migration of keratinocytes and impaired angiogenesis. This review provides an overview of keratinocyte dysfunctions in a high glucose environment. Effective and safe therapeutic approaches for promoting diabetic wound healing can be developed if molecular mechanisms responsible for keratinocyte dysfunction in high glucose environments are elucidated.


Assuntos
Diabetes Mellitus , Glucose , Humanos , Movimento Celular , Queratinócitos/fisiologia , Epiderme
12.
Br J Dermatol ; 188(2): 176-185, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763869

RESUMO

Sensory neurons innervating the skin are conventionally thought to be the sole transducers of touch, temperature, pain and itch. However, recent studies have shown that keratinocytes - like Merkel cells - act as sensory transducers, whether for innocuous or noxious mechanical, thermal or chemical stimuli, and communicate with intraepidermal free nerve endings via chemical synaptic contacts. This paradigm shift leads to consideration of the whole epidermis as a sensory epithelium. Sensory neurons additionally function as an efferent system. Through the release of neuropeptides in intimate neuroepidermal contact areas, they contribute to epidermal homeostasis and to the pathogenesis of inflammatory skin diseases. To counteract the dogma regarding neurocutaneous interactions, seen exclusively from the perspective of soluble and spreading mediators, this review highlights the essential contribution of the unrecognized anatomical contacts between sensory neurons and epidermal cells (keratinocytes, melanocytes, Langerhans cells and Merkel cells), which take part in the reciprocal dialogue between the skin, nervous system and immune system.


Assuntos
Queratinócitos , Pele , Humanos , Pele/inervação , Queratinócitos/fisiologia , Células Epidérmicas , Epiderme , Células Receptoras Sensoriais/fisiologia
13.
J Invest Dermatol ; 143(8): 1509-1519.e14, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813158

RESUMO

The channel-forming glycoprotein PANX3 functions in cutaneous wound healing and keratinocyte differentiation, but its role in maintaining skin homeostasis through aging is not yet understood. We found that PANX3 is absent in newborn skin but becomes upregulated with age. We characterized the skin of global Panx3-knockout (KO) mice and found that KO dorsal skin showed sex differences at different ages but generally had reduced dermal and hypodermal areas compared with age-matched controls. Transcriptomic analysis of the KO epidermis revealed reduced E-cadherin stabilization and Wnt signaling compared with that of wild-type, consistent with the inability of primary KO keratinocytes to adhere in culture and diminished epidermal barrier function in KO mice. We also observed increased inflammatory signaling in the KO epidermis and a higher incidence of dermatitis in aged KO mice compared with that in wild-type controls. These findings suggest that during skin aging, PANX3 is critical in the maintenance of dorsal skin architecture, keratinocyte cell-cell and cell-matrix adhesion, and inflammatory skin responses.


Assuntos
Queratinócitos , Pele , Camundongos , Animais , Feminino , Masculino , Queratinócitos/fisiologia , Epiderme , Inflamação/genética , Via de Sinalização Wnt , Camundongos Knockout
14.
Allergol. immunopatol ; 51(1): 30-36, ene. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-214019

RESUMO

Psoriasis is a chronic multisystemic inflammatory disease with inflammatory cell infiltration, hyperproliferation of keratinocytes in skin lesions, and epidermal barrier dysfunction. Normal human epidermal keratinocytes (NHEKs) were stimulated with interleukin 17A (IL-17A). The expression levels of sirtuin-5 (SIRT5) were analyzed by RT-qPCR and western blot assay. The proliferation levels of NHEKs were assessed by EdU staining. The expression of ELOVL1 and ELOVL4 was analyzed by RT-Qpcr, and the expression levels of filaggrin, loricrin, and aquaporin-3 were analyzed by RT-qPCR and western blot. Extracellular signal-regulated kinase 1/2 (ERK1/2) activator t-butylhydroquinone was used to activate ERK1/2. Here, we show that SIRT5 overexpression reduces cell viability and cell proliferation, and improves barrier dysfunction in IL-17A-treated human epidermal keratinocytes, this effect of which is significantly blunted by the ERK1/2 activator. In epidermal keratinocytes, SIRT5 decreases cell proliferation and inflammation and improves barrier dysfunction via ERK/STAT3. This study reveals the role of SIRT5 in the pathogenesis of psoriasis, epidermal hyperplasia, keratinocyte-mediated inflammatory responses, and barrier dysfunction, the role of which is mediated by ERK/STAT3 (AU)


Assuntos
Humanos , Sirtuínas/metabolismo , Interleucina-17 , Psoríase/fisiopatologia , Células Epiteliais/fisiologia , Queratinócitos/fisiologia , Reação em Cadeia da Polimerase , Western Blotting
15.
J Invest Dermatol ; 143(6): 1073-1084.e8, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36521556

RESUMO

Cutaneous wound healing is an orderly and intricate process that restores the barrier function and integrity of injured skin. Re-epithelialization, which involves the proliferation and migration of keratinocytes to cover the denuded surface, is essential for successful wound closure. There are many members of the FGF family, of which the paracrine-acting FGF1 and FGF7 subfamily members have been identified as positive regulators of wound repair. However, the role and underlying mechanisms of some other paracrine FGFs in wound repair still remain obscure. In this report, we found that paracrine FGF4 localized predominantly to the epidermal keratinocytes and was markedly upregulated at the wound edges in response to re-epithelialization in human and mouse wound models. Blockade of FGF4 resulted in delayed re-epithelialization of human ex vivo skin wounds, whereas recombinant FGF4 treatment promoted re-epithelialization and wound repair. Mechanistically, recombinant FGF4 promotes p38 MAPK‒GSK3ß‒mediated stabilization of Slug by reducing its ubiquitination, which triggers epithelial-to-mesenchymal transition and promotes the migration and proliferation of keratinocytes and thus wound re-epithelialization. Our findings uncover FGF4 as an important regulator of wound healing, highlighting a promising therapeutic avenue for skin injury.


Assuntos
Gastrópodes , Camundongos , Animais , Humanos , Glicogênio Sintase Quinase 3 beta , Cicatrização/fisiologia , Pele/lesões , Queratinócitos/fisiologia , Reepitelização , Modelos Animais de Doenças , Movimento Celular , Fator 4 de Crescimento de Fibroblastos
16.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430601

RESUMO

This study is preliminary to an experiment to be performed onboard the International Space Station (ISS) and on Earth to investigate how low gravity influences the healing of sutured human skin and vein wounds. Its objective was to ascertain whether these tissue explants could be maintained to be viable ex vivo for long periods of time, mimicking the experimental conditions onboard the ISS. We developed an automated tissue culture chamber, reproducing and monitoring the physiological tensile forces over time, and a culture medium enriched with serelaxin (60 ng/mL) and (Zn(PipNONO)Cl) (28 ng/mL), known to extend viability of explanted organs for transplantation. The results show that the human skin and vein specimens remained viable for more than 4 weeks, with no substantial signs of damage in their tissues and cells. As a further clue about cell viability, some typical events associated with wound repair were observed in the tissue areas close to the wound, namely remodeling of collagen fibers in the papillary dermis and of elastic fibers in the vein wall, proliferation of keratinocyte stem cells, and expression of the endothelial functional markers eNOS and FGF-2. These findings validate the suitability of this new ex vivo organ culture system for wound healing studies, not only for the scheduled space experiment but also for applications on Earth, such as drug discovery purposes.


Assuntos
Pele , Cicatrização , Humanos , Pele/metabolismo , Suturas , Queratinócitos/fisiologia , Procedimentos Neurocirúrgicos
17.
Elife ; 112022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053009

RESUMO

Epidermal keratinocytes mediate touch sensation by detecting and encoding tactile information to sensory neurons. However, the specific mechanotransducers that enable keratinocytes to respond to mechanical stimulation are unknown. Here, we found that the mechanically-gated ion channel PIEZO1 is a key keratinocyte mechanotransducer. Keratinocyte expression of PIEZO1 is critical for normal sensory afferent firing and behavioral responses to mechanical stimuli in mice.


Assuntos
Queratinócitos , Pele , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Queratinócitos/fisiologia , Mecanotransdução Celular/fisiologia , Camundongos , Células Receptoras Sensoriais/fisiologia , Pele/metabolismo , Tato/fisiologia
18.
Proc Natl Acad Sci U S A ; 119(35): e2006487119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35998218

RESUMO

Recent studies have revealed that normal human tissues accumulate many somatic mutations. In particular, human skin is riddled with mutations, with multiple subclones of variable sizes. Driver mutations are frequent and tend to have larger subclone sizes, suggesting selection. To begin to understand the histories encoded by these complex somatic mutations, we incorporated genomes into a simple agent-based skin-cell model whose prime directive is homeostasis. In this model, stem-cell survival is random and dependent on proximity to the basement membrane. This simple homeostatic skin model recapitulates the observed log-linear distributions of somatic mutations, where most mutations are found in increasingly smaller subclones that are typically lost with time. Hence, neutral mutations are "passengers" whose fates depend on the random survival of their stem cells, where a rarer larger subclone reflects the survival and spread of mutations acquired earlier in life. The model can also maintain homeostasis and accumulate more frequent and larger driver subclones if these mutations (NOTCH1 and TP53) confer relatively higher persistence in normal skin or during tissue damage (sunlight). Therefore, a relatively simple model of epithelial turnover indicates how observed passenger and driver somatic mutations could accumulate without violating the prime directive of homeostasis in normal human tissues.


Assuntos
Evolução Clonal , Epiderme , Homeostase , Queratinócitos , Carcinogênese/genética , Evolução Clonal/genética , Epiderme/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Mutação , Receptor Notch1/genética , Proteína Supressora de Tumor p53/genética
19.
Proc Natl Acad Sci U S A ; 119(30): e2115009119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858442

RESUMO

Tissue wounding induces cutaneous sensory axon regeneration via hydrogen peroxide (H2O2) that is produced by the epithelial NADPH oxidase, Duox1. Sciatic nerve injury instead induces axon regeneration through neuronal uptake of the NADPH oxidase, Nox2, from macrophages. We therefore reasoned that the tissue environment in which axons are damaged stimulates distinct regenerative mechanisms. Here, we show that cutaneous axon regeneration induced by tissue wounding depends on both neuronal and keratinocyte-specific mechanisms involving H2O2 signaling. Genetic depletion of H2O2 in sensory neurons abolishes axon regeneration, whereas keratinocyte-specific H2O2 depletion promotes axonal repulsion, a phenotype mirrored in duox1 mutants. Intriguingly, cyba mutants, deficient in the essential Nox subunit, p22Phox, retain limited axon regenerative capacity but display delayed Wallerian degeneration and axonal fusion, observed so far only in invertebrates. We further show that keratinocyte-specific oxidation of the epidermal growth factor receptor (EGFR) at a conserved cysteine thiol (C797) serves as an attractive cue for regenerating axons, leading to EGFR-dependent localized epidermal matrix remodeling via the matrix-metalloproteinase, MMP-13. Therefore, wound-induced cutaneous axon de- and regeneration depend on the coordinated functions of NADPH oxidases mediating distinct processes following injury.


Assuntos
Axônios , Peróxido de Hidrogênio , NADPH Oxidases , Regeneração Nervosa , Cicatrização , Proteínas de Peixe-Zebra , Animais , Axônios/fisiologia , Peróxido de Hidrogênio/metabolismo , Queratinócitos/fisiologia , NADPH Oxidases/genética , NADPH Oxidases/fisiologia , Regeneração Nervosa/genética , Células Receptoras Sensoriais/fisiologia , Cicatrização/genética , Cicatrização/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/fisiologia
20.
Sci Rep ; 12(1): 9912, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705588

RESUMO

Many cell types migrate in response to naturally generated electric fields. Furthermore, it has been suggested that the external application of an electric field may be used to intervene in and optimize natural processes such as wound healing. Precise cell guidance suitable for such optimization may rely on predictive models of cell migration, which do not generalize. Here, we present a machine learning model that can forecast directedness of cell migration given a timeseries of previous directedness and electric field values. This model is trained using time series galvanotaxis data of mammalian cranial neural crest cells obtained through time-lapse microscopy of cells cultured at 37 °C in a galvanotaxis chamber at ambient pressure. Next, we show that our modeling approach can be used for a variety of cell types and experimental conditions with very limited training data using transfer learning methods. We adapt the model to predict cell behavior for keratocytes (room temperature, ~ 18-20 °C) and keratinocytes (37 °C) under similar experimental conditions with a small dataset (~ 2-5 cells). Finally, this model can be used to perform in silico studies by simulating cell migration lines under time-varying and unseen electric fields. We demonstrate this by simulating feedback control on cell migration using a proportional-integral-derivative (PID) controller. This data-driven approach provides predictive models of cell migration that may be suitable for designing electric field based cellular control mechanisms for applications in precision medicine such as wound healing.


Assuntos
Eletricidade , Queratinócitos , Animais , Movimento Celular/fisiologia , Estimulação Elétrica/métodos , Queratinócitos/fisiologia , Aprendizado de Máquina , Mamíferos , Cicatrização/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...